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A NEW FAMILY OF FIVE-CARBON IMINOALDITOLS
WHICH ARE POTENT GLYCOSIDASE INHIBITORS

Ronald C. Bernotas,! George Papandreou, Jonathan Urbach and Bruce Ganem*

Department of Chemistry, Baker Laboratory
Cornell University, Ithaca, New York 14853 USA

Abstract -- The synthesis of 1,5-dideoxy-1,5-imino-D-xylitol 2 (and the enantiomeric iminoalditols 3 and 4) is
described. Alditol 2 compares favorably with 1-deoxynojirimycin 1 as a potent inhibitor of B-glucosidase.

Deoxynojirimycin 1 effectively inhibits the enzymatic hydrolysis of B-D-glucosides.2 The potential
chemotherapeutic importance of such inhibitors of glucose metabolism3-7 has prompted considerable synthetic
interest in these alkaloids.8-10 We reasoned that improved inhibitors might be rationally designed by examining
how each hydroxyl substituent in the glycone (e.g. D-glucose) contributed to the free energy of binding with the
enzyme. Dale et al. have systematically studied the inhibition of sweet almond B-glucosidase by a wide variety
of normal and deoxysugars.!1 While the stercochemical configurations of individual ring hydroxyls were im-
portant, removing the C6-hydroxymethyl substituent altogether had remarkably little effect on enzyme-substrate
interactions. This surprising finding stiggested that stereochemically simpler nor-analogs of 1 might also inhibit
glycoside hydrolysis. We now wish to report an extremely rapid and efficient synthesis of des(hydroxymethyl)-
nojirimycin 2, As expected, this achiral triol is in its own right a potent and highly selective almond f-glucosi-
dase inhibitor. We have also prepared the mannose and galactose analogs 3 and 4. These enantiomeric struc-
tures likewise inhibit glycosidases and shed new light on H-bonding and other enzyme-substrate interactions in
the catalyzed hydrolysis of glycosides.
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We planned a general synthesis of five-carbon iminoalditols like 2 from D-hexoses as outlined in the
Scheme. The reductive ring opening of bromopyranose sugars, first developed by Vasellal2 and modified by us®
to incorporate an in sifu reductive amination of the incipient w-alkenylaldehyde, was successful in transforming
methyl 6-bromo-6-deoxy-0i-D-glucopyranoside!3 5 into aminoalkenetriol 6 in a one-pot reaction (70% yield).14
To our knowledge this represents the first example of direct, reductive opening of an unprotected glycoside.
Moreover the reaction proceeded without complications arising from aldehyde epimerization or acetal/hemiacetal
formation. To prevent oxidation of the benzylic amine in the next step,15 ozonolysis of 6 was performed on the
corresponding trifluoroacetate salt. When the first-formed ozonide was reductively cleaved using dimethylsulfide
in the presence of sodium cyanoborohydride (2.5 equiv in CH30H), trihydroxypiperidine 8 was obtained directly
in 57% yield.16 Hydrogenolysis of 8 quantitatively afforded the desired 1,5-dideoxy-1,5-imino-D-xylitol 2.17
In similar fashion D-mannose and D-galactose were converted via intermediates 9 and 10 to the enantiomerically
related 318 and 4,19 respectively.

At pH 5.0, alditol 2 inhibited sweet almond B-glucosidase (35% of control activity at 1 mM) but had no
effect whatsoever on yeast o-glucosidase, jackbean a-mannosidase, coffee a-galactosidase, B-galactosidase, B-
glucuronidase, or B-hexosaminidase (all bovine). Kinetic measurements with 2 on almond p—-glucosidase using
p-nitrophenyl B-D-glucopyranoside as substrate (Ky= 2.5 mM) resulted in Lineweaver-Burk plots indicating
competitive inhibition.20 Additionally, Dixon plots of 1/V versus [I] gave a value of K for 2 (0.43 0.1 mM)
similar to that for 1 (0.37 mM at pH 5).11 These data indicate that the hydroxymethylene sidechain of 1 is
relatively unimportant for inhibitor binding.

Likewise, in exploratory screens against the same group of enzymes, mannose analog 3 competitively
inhibited only jackbean oi-mannosidase. Its effect was comparable to that of 1-deoxymannojirimycin (40% of
control activity at 1 mM). However galactose analog 4 had only marginal effects on o- or B-galactosidase,
suggesting that the -CHOH group of galactose may serve as a much more important recognition unit for catalyzed
glycoside hydrolysis.
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(a) excess Zn, 19:1 PrOH:H,0, NaBH;CN (2 equiv), PhCH,;NH, (15 equiv), reflux, 2h;
(b) CH,Cl,, excess CF3;CO,H, evaporation; (c) CH,Cl,, O; (1.1 equiv), -78°C; (d) (CH;),S
(1.5 equiv), NaBH;CN (2.5 equiv), CH;0H, 1t, 3h; (e) Pd-C, Hy, CH,OH.
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